

MRGS, ROHTAK

PREFACE

Dear Parents and Students,

Summer vacation is around the corner, bringing with itself a much-needed respite from hectic school days. We hope that you will thoroughly enjoy the vacations and make the most of this summer. While it is indeed important that you relax and refresh yourselves, it is also important that you exercise your minds.

Keeping this in mind, we have designed various exciting activities to keep the students engaged and active during the summer vacation. These fun projects/ assignments would enhance learning skills, help understand concepts better, and make for a great crash course aimed at improving academic output.

These activities will not only help you to revise what was taught, but will also enrich your knowledge. These projects will be assessed as Subject Enrichment Activity, Portfolio or Art Integrated activity.

We encourage parents to motivate and support the students to ensure the given work is completed in time, to the best of their ability. Your support and encouragement both have a huge impact on your child's learning ability.

The Holiday Home Work is to be done neatly with relevance to the questions asked and to be submitted to the subject teachers . School reopening i.e. 1th July 2023.

Wishing you a fun filled, safe summer vacation.

PRINCIPAL MR. DHARMVEER

<u>English</u>

1. Choose any two comprehensive passages (Discursive & Case based) from e-book or any source and write
the answers of the questions. Find 10 difficult words from the passage.
2. Write 10 objective questions of the chapter "The Last Lesson" ", Lost Spring" and "Deep Water" Which
has not been written in your Fair Notebook.
3. Write 10 objective questions of the chapter "The Third Level" and "Tiger King" which has not been written
in your Fair Notebook.
4. Write two conceptual and internal questions of each chapter "The Last Lesson", "Lost Spring", and " Deep
Water" and "The Third Level" and "The Tiger King".
5. Write summary of the poem "My Mother At Sixty Six" in your own language.
6. Write five Notices (Meeting, Event, Lost & Found, Tour, Competition).
7. Write five invitation Letters. Formal -In a fixed and Printed format.
Physics
1. Revise Chapter 1, 2, 3.
2. Make a Project file on an Electric Field, Potential or Capacitor.
3. Do give assignment in your fair Notebook and Complete your Practical file
<u>Chemistry</u>
1.Revise ch-1 to 3.
2.Do all the pyq of last 5 years.
3.Do all the ncert questions of these chapters in your fnb.
4. Prepare a project report on battery or colligative properties.
5.Solve the assignment in your fnb.
<u>Biology</u>
1: Revise chapter -2
Sexual Reproduction in Flowering plant.
2: Revise chapter -3
Human Reproduction
3: Revise chapter:4
Reproductive Health
4: Do assignment of chapter 2:3:4 in your
Note book.
5: Write Ncert question of chapter 2:3:4
In your Notebook.
6: Draw diagram of Male reproductive system, Female Reproductive system.
Flower, ovule. Embryo sac. Double Fertilization. Graph of Menstrual cycle.
Structure of Graffian follicles
Maths
Practice, chapter 5,4,5 and / (up to done) and assignment all in rough notebook

what is the value of the determinant? (2012 1)	Q.6 If A is a square matrix such that A ² =1, where I is the identity matrix, then what is the value of A ⁻¹ ?		
(a) 0 (b)1 (c)-1 (d) can be any real value	(a) A+I (b) Null matrix (c) A (d) Transpose of A (2012	
I)		2012	
Q.2 If $A = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}$ and $B = \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix}$, then what is the	Q.7 If $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$, then what is the value of $B^{-1} A^{-1}$?	2012	
I)	r 1 21 r 1 2 1		
Value of determinant of AB? (2012 I)	(a) $\begin{bmatrix} 1 & -5 \\ -1 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 5 \\ 1 & -2 \end{bmatrix}$		
(a) 0 (b)1 (c) 10 (d) 20	$ \begin{array}{c} (c) \begin{bmatrix} -1 & 3 \\ -1 & -2 \end{bmatrix} \\ \textbf{(d)} \begin{bmatrix} -1 & -3 \\ 1 & -2 \end{bmatrix} \\ \textbf{O.8 If each element in a row of a determinant is} $		
8 -5 1 Q.3 If 5 x 1 =2, then what is the value of x?	multiplied by the same factor r, then the value of	of	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	the determinant. (20	12	
II)	(a) is multiplied by r^3 (b) is increased by	. 2	
$-a^2$ ab a	(a) is multiplied by r ² (b) is increased by	/ 3r	
Q.4 What is the value of $ab -b^2 bc = ?$	(c) remains unchanged (d) is multiplied by r		
1 uc bq -c (2012 I)	Q.9 The value of the determinant $2 + 2 + 2$		
0.5 If a matrix A has inverse B and C. then which one	$x^2 + y^2 + z^2$ $y^2 + z^2 + z^2$ is (20)	12	
	$z^2 = 1 + z^2 + y^2$	_	
II) of the following is correct ?	(a) (b) $x^2 + x^2 + z^2$		
(a) B may not be equal to C	(a) 0 (c) $x^2+y^2+z^2+1$ (d) None of these		
(b) B should be equal to C (c) B and C should be unit matrices			
(d) None of the above			
(d) None of the above (2012 I)			
(d) Hole of the above (2012 I)	Q.18 If A and B are two two non-singular squa Matrices such that AB-A , then which one of the	re e	
(a) None of the above (2012 I) $a \mid 2 \mid 2$ (2012 I) $0 \mid 4$ is not invertible then	Q.18 If A and B are two two non-singular squa Matrices such that AB-A , then which one of the	re e 2013	
(a) None of the above (2012 I) Q.10 If the matrix -3 $\begin{vmatrix} 2 & 2 \\ 0 & 4 \end{vmatrix}$ is not invertible, then 1 -1 1	Q.18 If A and B are two two non-singular squa Matrices such that AB-A , then which one of the following is correct?	re e 2013	
(a) None of the above (2012 I) Q.10 If the matrix $\begin{array}{c} a \\ -3 \\ 1 \end{array} \begin{vmatrix} 2 & 2 \\ 0 & 4 \\ -1 & 1 \end{vmatrix}$ is not invertible, then I) (2012 II)	Q.18 If A and B are two two non-singular squa Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) B = A ⁻¹	re e 2013	
(a) None of the above (2012 I) Q.10 If the matrix $\begin{array}{c} a \\ -3 \\ 1 \end{array} \begin{vmatrix} 2 & 2 \\ 0 & 4 \\ -1 & 1 \end{vmatrix}$ is not invertible, then I) (a) a= -5 (b) a=5 (c) a=0 (d)a=1	Q.18 If A and B are two two non-singular squa Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) $B = A^{-1}$ (c) $B = A^2$ (c) Determinants of B is z	re e 2013 ero	
(a) None of the above (2012 I) Q.10 If the matrix $\begin{array}{c}a\\-3\\1\end{array}$ $\begin{vmatrix} 2\\2\\0\\-1\\1\end{vmatrix}$ $\begin{vmatrix} 2\\2\\0\\4\end{array}$ is not invertible, then I) (a) a= -5 (b) a=5 (c) a=0 (d)a=1	Q.18 If A and B are two two non-singular squa Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) $B = A^{-1}$ (c) $B = A^2$ (c) Determinants of B is z Q.19 The cofactor of the element 4 in the $\begin{vmatrix} 1 & 2 & 3 \end{vmatrix}$	re e 2013 ero	
(a) None of the above (2012 I) Q.10 If the matrix $\begin{array}{c} a \\ -3 \\ 1 \end{array} \begin{vmatrix} 2 & 2 \\ 0 & 4 \\ -1 & 1 \end{vmatrix}$ is not invertible, then I) (a) a= -5 (b) a=5 (c) a=0 (2012 II) (d)a=1 Q.11 The inverse of a diagonal matrix is a (2012 II)	Q.18 If A and B are two two non-singular squa Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) $B = A^{-1}$ (c) $B = A^{2}$ (c) Determinants of B is z Q.19 The cofactor of the element 4 in the determinants $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$ is	re e 2013 ero	
(a) None of the above (2012 I) Q.10 If the matrix $\begin{array}{c} a \\ -3 \\ 1 \end{array} \begin{vmatrix} 2 & 2 \\ 0 & 4 \end{array}$ is not invertible, then I) (a) $a = -5$ (b) $a = 5$ (c) $a = 0$ (2012 II) (d) $a = 1$ Q.11 The inverse of a diagonal matrix is a (2012 II) (a) symmetric matrix (b) skew-symmetric matrix (c) diagonal matrix (c) skew-symmetric matrix	Q.18 If A and B are two two non-singular squa Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) $B = A^{-1}$ (c) $B = A^2$ (c) Determinants of B is z Q.19 The cofactor of the element 4 in the determinants $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$ (a) 2 (b) 4 (c) 6 (d) -6 Q 20 What is the value of the determinant	re e 2013 ero	
(a) None of the above (2012 I) Q.10 If the matrix $\begin{array}{c} a \\ -3 \\ 1 \end{array} \begin{vmatrix} 2 & 2 \\ 0 & 4 \\ -1 & 1 \end{vmatrix}$ is not invertible, then I) (a) a= -5 (b) a=5 (c) a=0 (2012 II) (d) a=1 Q.11 The inverse of a diagonal matrix is a (2012 II) (a) symmetric matrix (b) skew-symmetric matrix (c) diagonal matrix (d) None of these	Q.18 If A and B are two two non-singular squa Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) $B = A^{-1}$ (c) $B = A^2$ (c) Determinants of B is z Q.19 The cofactor of the element 4 in the determinants $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$ (a) 2 (b) 4 (c) 6 (d) -6 Q.20 What is the value of the determinant $\begin{vmatrix} 1 & bc & a(b+c) \end{vmatrix}$	re e 2013 ero	
(d) None of the above (2012 I) Q.10 If the matrix $\begin{array}{c} a \\ -3 \\ 1 \end{array} \begin{vmatrix} 2 & 2 \\ 0 & 4 \end{array}$ is not invertible, then I) (a) a= -5 (b) a=5 (c) a=0 (2012 II) (a) a= -5 (b) a=5 (c) a=0 (d)a=1 (2012 II) (a) symmetric matrix (b) skew-symmetric matrix (c) diagonal matrix (b) skew-symmetric matrix (d) None of these (2.12 II) Q.12 The determinant of a orthogonal matrix	Q.18 If A and B are two two non-singular squa Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) $B = A^{-1}$ (c) $B = A^2$ (c) Determinants of B is z Q.19 The cofactor of the element 4 in the determinants $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$ (a) 2 (b) 4 (c) 6 (d) -6 Q.20 What is the value of the determinant $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$?	re e 2013 ero	
(a) it one of the above (2012 I) Q.10 If the matrix $\begin{array}{c} a \\ -3 \\ 1 \end{array} \begin{vmatrix} 2 & 2 \\ 0 & 4 \end{array}$ is not invertible, then I) (a) $a = -5$ (b) $a = 5$ (c) $a = 0$ (2012 II) (a) $a = -5$ (b) $a = 5$ (c) $a = 0$ (d) $a = 1$ Q.11 The inverse of a diagonal matrix is a (2012 II) (a) symmetric matrix (b) skew-symmetric matrix (c) diagonal matrix (b) skew-symmetric matrix (c) diagonal matrix (c) skew-symmetric matrix (d) None of these Q.12 The determinant of a orthogonal matrix (a) ± 1 (b) 2 (c) 0 (d) ± 2 (2013 I) $m \mid n p$	Q.18 If A and B are two two non-singular squat Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) $B = A^{-1}$ (c) $B = A^2$ (c) Determinants of B is z Q.19 The cofactor of the element 4 in the determinants $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$ (a) 2 (b) 4 (c) 6 (d) -6 Q.20 What is the value of the determinant $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$? Q.21 If A is a square matrix of order 3 with	re e 2013 ero	
(a) Frome of the above (2012 I) Q.10 If the matrix $\begin{array}{c} a \\ -3 \\ 1 \end{array} \begin{vmatrix} 2 & 2 \\ 0 & 4 \end{array}$ is not invertible, then I) (a) $a = -5$ (b) $a = 5$ (c) $a = 0$ (2012 II) (a) $a = -5$ (b) $a = 5$ (c) $a = 0$ (d) $a = 1$ Q.11 The inverse of a diagonal matrix is a (2012 II) (a) symmetric matrix (b) skew-symmetric matrix (c) diagonal matrix (b) skew-symmetric matrix (c) diagonal matrix (c) skew-symmetric matrix (a) ± 1 (b) 2 (c) 0 (d) ± 2 (2013 I) M n p n n n p m n n p m n n p m n n p m n n n m n n n n n	Q.18 If A and B are two two non-singular squat Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) B = A ⁻¹ (c) B = A ² (c) Determinants of B is z Q.19 The cofactor of the element 4 in the determinants $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$ (a) 2 (b) 4 (c) 6 (d) -6 Q.20 What is the value of the determinant $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$? Q.21 If A is a square matrix of order 3 with $ A \neq 0$, which one of the following is correct?	re e 2013 ero	
(d) Frome of the above (2012 I) Q.10 If the matrix -3 1 $\begin{vmatrix} 2 & 2 \\ 0 & 4 \\ -1 & 1 \end{vmatrix}$ (a) $a = -5$ (b) $a = 5$ (c) $a = 0$ (2012 II) (a) $a = -5$ (b) $a = 5$ (c) $a = 0$ (d) $a = 1$ Q.11 The inverse of a diagonal matrix is a (2012 II) (a) symmetric matrix (b) skew-symmetric matrix (c) diagonal matrix (b) skew-symmetric matrix (c) diagonal matrix (d) None of these Q.12 The determinant of a orthogonal matrix (a) ± 1 (b) 2 (c) 0 (d) ± 2 (2013 I) m n p Q.13 The value of the determinant p n n (a) is a perfect cube (b) is a perfect square	Q.18 If A and B are two two non-singular squat Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) $B = A^{-1}$ (c) $B = A^2$ (c) Determinants of B is z Q.19 The cofactor of the element 4 in the determinants $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$ (a) 2 (b) 4 (c) 6 (d) -6 Q.20 What is the value of the determinant $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$? Q.21 If A is a square matrix of order 3 with $ A \neq 0$, which one of the following is correct? (a) $ adj = A A $ (b) $ adj A = A ^2$	re 2013 ero	
(d) From of the above (2012 I) Q.10 If the matrix -3 $\begin{vmatrix} 2 & 2 \\ 0 & 4 \end{vmatrix}$ is not invertible, then 1 $\begin{vmatrix} -1 & 1 \\ -1 & 1 \end{vmatrix}$ (a) $a = -5$ (b) $a = 5$ (c) $a = 0$ (d) $a = 1$ Q.11 The inverse of a diagonal matrix is a (2012 II) (a) symmetric matrix (b) skew-symmetric matrix (c) diagonal matrix (b) skew-symmetric matrix (c) diagonal matrix (d) None of these Q.12 The determinant of a orthogonal matrix (a) ± 1 (b) 2 (c) 0 (d) ± 2 (2013 I) $m \mid n \mid p \mid m \mid n \mid n \mid p \mid p$	Q.18 If A and B are two two non-singular squat Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) B = A ⁻¹ (c) B = A ² (c) Determinants of B is z Q.19 The cofactor of the element 4 in the determinants $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$ (a) 2 (b) 4 (c) 6 (d) -6 Q.20 What is the value of the determinant $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$ Q.21 If A is a square matrix of order 3 with $ A \neq 0$, which one of the following is correct? (a) $ adj = A A $ (b) $ adj A = A ^2$ (c) $ adj A = A ^3$ (d) $ adj A ^2 = A $	re 2013 ero	
(d) From of the above (2012 I) Q.10 If the matrix -3 1 -1 1 (a) $a = -5$ (b) $a = 5$ (c) $a = 0$ (d) $a = 1$ Q.11 The inverse of a diagonal matrix is a (2012 II) (a) symmetric matrix (b) skew-symmetric matrix (c) diagonal matrix (b) skew-symmetric matrix (c) diagonal matrix (c) b) skew-symmetric matrix (c) diagonal matrix (c) $a = 0$ (d) ± 2 (2013 I) (a) ± 1 (b) 2 (c) 0 (d) ± 2 (2013 I) (a) ± 1 (b) 2 (c) 0 (d) ± 2 (2013 I) (a) ± 1 (b) 2 (c) 0 (d) ± 2 (2013 I) (a) is a perfect cube (b) is a perfect square (c) has linear factor (d) is zero Q.14 The roots of the equation (2013 I) 1 $t - 1$ 1 (a) $t - 1$ 1 (b) $t - 1$ 1 (c)	Q.18 If A and B are two two non-singular squat Matrices such that AB-A, then which one of the following is correct? (2) (a) B is an identity matrix (b) $B = A^{-1}$ (c) $B = A^2$ (c) Determinants of B is z Q.19 The cofactor of the element 4 in the determinants $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$ (a) 2 (b) 4 (c) 6 (d) -6 Q.20 What is the value of the determinant $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$ Q.21 If A is a square matrix of order 3 with $ A \neq 0$, which one of the following is correct? (a) $ adj = A A $ (b) $ adj A = A ^2$ (c) $ adj A = A ^3$ (d) $ adj A ^2 = A $	re e 2013 ero	

(a)1,2 (b) -1,2 (c) 1,-2 (d) -1,-2 Q.15 If D is determinant of order 3 and D' is the Determinant obtained by replacing the element Of D by their cofactors, then which one of the Following is correct? (a) $D^{'}=D^{2}$ (b) $D^{'}=D^{3}$ $(c)D^{2}=2D^{2}$ (d) $D^{2}=3D^{3}$ Q.16 Consider the following statements (2013 I) I. A matrix is not a number. II. Two determinants of different orders may have the Same value. Which of the above statement(s) is/are correct? (a) Only I (b) Only II (c) Both I and II (d) Neither I and II Q.17 What is the value of the minor of the element 9 in the determinant $\begin{bmatrix} 10 & 19 & 2 \\ 0 & 13 & 1 \\ 9 & 24 & 2 \end{bmatrix}$? (a) -9 (b) -7 (c) 7 (d) 0 (2013 I) Q.22 If $2\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$, then what is \mathbf{A}^{-1} equal to ? (a) $\begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$ (b) $\frac{1}{2} \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$ (c) $\frac{1}{4} \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$ (d) None of these Q.23 Consider the following statements (2013 II) (2013 II) I. The matrix $\begin{vmatrix} 1 & 2 & 1 \\ a & 2a & 1 \\ b & 2b & 1 \end{vmatrix}$ is singular II. The matrix $\begin{vmatrix} c & 2c & 1 \\ a & 2a & 1 \\ b & 2b & 1 \end{vmatrix}$ is non-singular Which of the above statement(s) is / are correct? (a) Only I (b) Only II (c) Both I and II(d) Either I or II Q.24 One of the roots of $\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+x \end{vmatrix} = 0$ is (2013 II) (a) abc (b) a+b+c(c) - (a+b+c)(d) –abc Q.25 The determinant of an odd order skew-symmetric matrix is always (2014 I) (a) zero (b) one (c) negative (d) depends on the matrix Q.26 If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant (2014 I) (c) changes its sign (d) is doubled (a) becomes zero (b) remains the same **0.27** Consider two matrices 1 2 $A = \begin{vmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{vmatrix} \text{ and } B = \begin{vmatrix} 1 & 2 & -4 \\ 2 & 1 & -4 \end{vmatrix}$ (2014 I) Which one of the following is correct? (a) B is the right inverse of A (b) B is the left inverse of A (c) B is the both sided inverse of A (d) None of the above Q.28 Consider the following statements in respect of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$ (2014 II) I. The matrix A is skew – symmetric **II.** The matrix A is symmetric III. The matrix A is invertible. Which of the above statement(s) is/are correct ? (a) Only I (b) Only III (d) II and III (c) I and II Q.29 If A and B are square matrices of second order such that |A| = -1 and |B| = 3. then what is |3AB| equal (2014 II) to? (a) 3 (b) -9 (c) -27 (d) None of these

Q.30 If the matrix A is such that $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, then what is A equal to ? (2014) (a) $\begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 4 \\ 0 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & -4 \\ 0 & -1 \end{bmatrix}$	II)		
Q.31 From the matrix equation $AB = AC$, where A, B and C are the square matrices of same or conclude $B = C$ provided (a) A is non-singular (b) A is singular(c) A is summatrized (d) A is show summatriced (d) A is show summatriced (d) A is shown summatrixeed (d)	der, we can (2014 II)		
(a) A is non-singular (b) A is singular(c) A is symmetric (d) A is skew-symmetric (d) A is skew-symme	(2014 II)		
Q.33 If $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, where $i = \sqrt{-1}$, then what is x equal to?	(2014 II)		
$\mathbf{Q.34} \mathbf{If} \begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{vmatrix} = 0, \text{ then which one of the following is correct?}$	(2014 II)		
 (a) a/b is one of the cube roots of unity (b) a/b is one of the cube roots of unity (c) a is one of the cube roots of unity (d) b is one of the cube roots of unity 	(2014 II)		
I. Determinant is a square matrix II. Determinant is a number associated with a square matrix Which of the above statement(s) is/are correct?	(2014 11)		
(a) Only I (b) Only II (c) Both I and II(d) Neither I and II Q.36 If $a \neq b \neq c$ all are positive, then the value of determinant $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is	(2014 II)		
(a) non-negative (b) non-positive (c) negative (d) positive Q.37 The value of $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$ is	(2015 I)		
 (a) x+y (b) x-y (c) xy (d) 1+x+y Q.38 Consider the following in respect of two non-singular matrices A and B same order. I. det (A+B) = det A+ debt II. (A+B)⁻¹ = A⁻¹+B⁻¹ Which of the above statement(s) is/are correct? 	(2015 I)		
(a) Only I (b) Only II (c) Both I and II(d) Neither I nor II Q.39 If $A = \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix}$, then what is $A+3A^{-1}$ equal to?	(2015 I)		
(a) 3 <i>l</i> (b)5 <i>l</i> (c) <i>ll</i> (d) None of these Q.40 If A is an invertible matrix of order n and k is any positive real number, then the value of det(A) is	[det (kA)] ⁻¹ (2015 II)		
(a) k^{-n} (b) k^{-1} (c) k^{n} (d) nk $ a \ 1 \ 1 $			
Q.41 If the value of the determinant $\begin{vmatrix} 1 & b & 1 \\ 1 & 1 & c \end{vmatrix}$ is positive, where $a \neq b \neq c$, then the value of all	bc (2015 II)		
(a) cannot be less than 1 (b) is greater than -8 (c) is less than -8 (d) must be greater than 8 1 - a - a - b - c - b + b + c	cl		
Q.42 If a,b and c are real numbers, then the value of the determinants $\begin{vmatrix} 1 & a & a & b & c \\ 1 & -b & b & -c & -a & c + c \\ 1 & -b & -c & -a & c & -c & -c & -c & -c & -c $	a is		
(a) 0 (b) 9a-b)(b-c)(c-a) (c) $(a+b+c)^2$ (d) $(a+b+c)^3$ $a+a$ II)	<i>b</i>] (2015		
Q.43 Consider the following statements in respect of the determinant $\begin{vmatrix} \cos^2 \frac{a}{2} & \sin^2 \frac{a}{2} \\ \sin^2 \beta & \cos^2 \beta \end{vmatrix}$	(2015 II)		
Where α, β are complementary angles. I. The value of the determinant is $\frac{1}{\sqrt{2}} cos\left(\frac{\alpha-\beta}{2}\right)$			
II. The maximum value of the determinant is $\frac{1}{2}$			

Which of the above statement(s) is/are correct? (c) Both I and II(d) Neither I nor II (a) Only I (b) Only II Q.44 The matrix $A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & x - 1 & 1 \\ 2 & 7 & x - 3 \end{bmatrix}$ will have inverse for every real number x except for (2015) (a) $x = \frac{11 \pm \sqrt{5}}{2}$ (b) $x = \frac{9 \pm \sqrt{5}}{2}$ (c) $x = \frac{11 \pm \sqrt{3}}{2}$ (d) $x = \frac{9 \pm \sqrt{3}}{2}$ Q.45 If A is an orthogonal matrix of order 3 and $B = \begin{bmatrix} 1 & 2 & 3 \\ -3 & 0 & 2 \\ 2 & 5 & 0 \end{bmatrix}$, then which of the following is/are correct? [**1** 3 2 (2015 II) (I). $|A| = \pm 47$ II. AB = BASelect the correct answer using the code given below: (2015 II) (a) Only I (b) Only II (c) Both I and II (d) Neither I nor II Q.46 If A is a square matrix, then what is adj (A^{-1}) -(adj A)⁻¹ equal to? (2016 I) (c) Unit matrix (a) 2|A|(b) Null matrix (d) None of these Directions (Q. Nos., 47-48) Consider the function $f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$, where p is a constant. Q.47 What is the value of f(O) ? (2016 I) (a) p^{3} (b) $3p^{3}$ (c) $5p^3$ (d) $-6p^3$ Q.48 What is the value of p for which f(0) = 0? (a) $-\frac{1}{6}or0$ (b)-1 (c) $-\frac{1}{6}or1$ (d) -1 or 1 Q.49 Which of the following determinants have value "zero"? (2016 I) $(III) \begin{vmatrix} 0 & c & b \\ -c & 0 & a \\ -b & -c & c \end{vmatrix}$ (I) **41 1 5 79 7 9** $|1 \ a \ b+c|$ (II) $\begin{vmatrix} 1 & b & c+a \end{vmatrix}$ 29 5 3 $|1 \quad c \quad a+b|$ Select the correct answer using the code given below. (d) I, II and III (a) I and II (b) II and III (c) I and III Q.50 The system of linear equations kx + y+z = 1, x+ky + z = 1 and x+y+kz = 1 has a unique solution under which one of the following conditions? (a) $k \neq 1$ and $k \neq -2$ (b) $k \neq 1$ and $k \neq 2$ (c) $k \neq -1$ and $k \neq -2$ (d) $k \neq -1$ and $k \neq 2$ Q1 Construct a 2 × 2 matrix A = $[a_{ij}]$ whose elements are given by $a_{ij} = |(i)^2 - j|$. (2020)Q2 Write the number of all possible matrices of order 2×2 with each entry 1, 2 or 3. (AI 2016) Q3 Write the element a_{23} of a 3 × 3 matrix A = $[a_{ij}]$ whose elements a_{ij} are given by $a_{ij} = \frac{|i-j|}{2}$. (Delhi 2015) Q4 The elements a_{ij} of a 3 × 3 matrix are given by $a_{ij} = \frac{1}{2} |-3i + j|$. Write the value of element a_{32} . (AI 2014C)Q5 For a 2 × 2 matrix A = [a_{ij}], whose elements are given by $a_{ij} = \frac{(i+2j)^2}{4}$, write the value of a₂₁. (Delhi 2012C) Q6 For a 2 × 2 matrix, A = (a_{ij}) whose elements are given by $aij = \frac{i}{i}$, write the value of a₁₂. (Delhi 2011

Q7 If a matrix has 5 elements, then write all possible orders it can have (AI 2011) $\begin{bmatrix} x-y & z \\ 2x-y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$, find the value of x + y. (AI 2014) Q9 If $\begin{pmatrix} a+4 & 3b \\ 8 & -6 \end{pmatrix} = \begin{pmatrix} 2a+2 & b+2 \\ 8 & a-8b \end{pmatrix}$, write the value of a – 2b. (Foreign 2014) If $\begin{bmatrix} x.y & 4 \\ z+6 & x+y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$, write the value of (x + y + z)(Delhi 2014C) Q10 Find the value of a if 011 $\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$ (Delhi 2013) Q12 Find the value of b if $\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$ (Delhi 2013) If $\begin{bmatrix} x-y & 2y \\ 2y+z & x+y \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 9 & 5 \end{bmatrix}$, then write the value of (x + y + z). (AI 2013C) If $\begin{bmatrix} 2x+1 & 2y \\ 0 & y^2+1 \end{bmatrix} = \begin{bmatrix} x+3 & 10 \\ 0 & 26 \end{bmatrix}$, write the value of (x + y). (AI 2012C) Q13 Q14 If $\begin{bmatrix} x & x-y \\ 2x+y & 7 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 8 & 7 \end{bmatrix}$, the find the value of y. Q15 (*Delhi 2011C*) If A is a square matrix such that $A^2 = A$, then $(I - A)^3 + A$ is equal to Q16 a) I (d) I + A(b) 0(c) I - A(2020) If A is a square matrix such that $A^2 = I$, then find the simplified value of $(A - I)^3 + (A + I)^3 - 7A$ Q17 (Delhi 2016) If $\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = A$, then write the order of matrix A. (Foreign 2016) Q18 Solve the following matrix equation of x: Q19 $\begin{vmatrix} x & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ -2 & 0 \end{vmatrix} = O$ (Delhi 2014) If $2\begin{bmatrix} 3 & 4\\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0\\ 10 & 5 \end{bmatrix}$, find (x - y). Q20 (Delhi 2014) If A is a square matrix such that $A^2 = A$, then write the value of $7A - (I + A)^3$, where I is an identity Q21 (AI 2014) matrix. If $\begin{pmatrix} 2x & 4 \end{pmatrix} \begin{vmatrix} x \\ -8 \end{vmatrix} = 0$, find the positive value of x. Q22 (AI 2014C)If $\begin{vmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{vmatrix} = A + \begin{vmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{vmatrix}$, then find the matrix A. Q23 (Delhi 2013) If matrix $A = \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix}$ and $A^2 = kA$, then write the value of k. Q24 (AI 2013) If matrix $A = \begin{vmatrix} 2 & -2 \\ -2 & 2 \end{vmatrix}$ and $A^2 = pA$, then write the value of p. Q25 (AI 2013) If matrix $A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$ and $A^2 = \lambda A$, then write the value of λ . Q26 (AI 2013) If $2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8 \end{bmatrix}$, then write the value of (x +y). (Delhi 2013C, AI 2012) Q27

Q28 Simplify:

$$\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}$$

(Delhi 2012)
Q29 If $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 6 \\ -9 & x \end{bmatrix}$, write the value of x. (Delhi 2012)
Q30 Find the value of x + y from the following equation:
 $\begin{bmatrix} 1 & 5 \\ 7 & y & -3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 1 & 1 \end{bmatrix}$ (A1 2012)
Q31 If $3A - B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$, then find the matrix A. (Delhi 2012C)
Q32 Find a matrix A such that $2A - 3B + 5C = 0$, where
 $9 = \begin{bmatrix} -2 & 2 & 0 \\ -3 & 1 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{bmatrix}$
(Delhi 2019)
Q33 Let $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$, find a matrix D such that CD - AB = 0.
(Delhi 2017)
Q34 Find matrix A such that
 $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A = \begin{bmatrix} -1 & -2 \\ 1 & -2 \\ 9 & 22 \end{bmatrix}$
(A1 2017)
Q35 If $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$ find $A^2 - 5A + 4I$ and hence find a matrix X such that $A^2 - 5A + 4I + X = 0$
(Delhi 2015)
Q36 Three schools A, B and C organized a mela for collecting funds for helping the rehabilitation of flood victims. They sold hand made fans, mats and plates from recycled material at a cost of Rs. 25, Rs. 100 and Rs. 50 each. The number of articles sold are given below.
Virticle/School A B C
fands, fans 40 25 35
fats 20 30 40
in the funds collected by each school separately by selling the above articles. Also, find the total funds
collected for the purpose. Write one value generated by the above articles. Also, find the total funds
collected for the purpose. Write one value generated by the above articles. Also, find the total funds
collected for the purpose. Write one value generated by the above articles. Write one value generated by the organization for the three villages X. Y and Z are given below:
(i) (ii) (ii)
(ii) (iii)
(iii) (iiii)
(iii) (iii) (iiii)
(iiii) (iii) (iiii)
(iiii) (iii) (iiii)

Q39 In a parliament election, a political party hired a public relations firm to promote its candidates in three ways - telephone, house calls and letters. The cost per contact (in paise) is given in matrix A as [140] *Telephone* A = |200| House call 150 Letters The number of contacts of each type made in two cities X and Y is given in matrix B as Telephone Housecall Letters [1000] 500 5000 City X Find the total amount spent by the party in the two cities. B = 10000 *City* Y 3000 1000 What should one consider before casting his/her vote-party's promotional activity or their social activities? (*Foreign 2015*) If $\begin{bmatrix} 2x & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} = O$, find x. Q40 (Delhi 2015C) Q41 A trust fund, Rs. 35,000 is to be invested in two different types of bonds. The first bond pays 8% interest per annum which will be given to orphanage and second bond pays 10% interest per annum which will be given to an N.G.O. (Cancer Aid Society). Using matrix multiplication determine how to divide Rs. 35,000 among to two types of bonds if the trust fund obtains an annual total interest of Rs. 3,200. What are the values reflected in this question? (AI 2015C) If A is a matrix of order 3×2 , then the order of the matrix A' is _____. Q42 (2020)If $A^{T} = \begin{vmatrix} -1 & 2 \\ -1 & 2 \\ 0 & 1 \end{vmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then find $A^{T} - B^{T}$. (AI 2012) Q43 Q44 A square matrix A is said to be skew – symmetric, if _____. (2020) $\begin{bmatrix} 0 & a & -3 \end{bmatrix}$ If the matrix $A = \begin{bmatrix} 2 & 0 & -1 \end{bmatrix}$ is skew symmetric, find the values of 'a' and 'b'. 045 b 1 0(2018)Matrix $A = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$ is given to be symmetric, find values of a and b. Q46 (Delhi 2016) If $A = \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix}$ is written as A = P + Q, where P is a symmetric matrix and Q is a skew symmetric Q47 matrix, then write the matrix P. (Foreign 2016) Express the matrix $A = \begin{bmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix. Q48 (AI 2015C)Q49 Write a 2×2 matrix which is both symmetric and skew symmetric. (*Delhi 2014C*) For what value of x, is the matrix $A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$, a skew – symmetric matrix? Q50 (AI 2013) If A and B are symmetric matrices, such that AB and BA are both defined, then prove that AB – BA is Q51 a skew symmetric matrix. (AI 2019)

Q52 Show that all the diagonal elements of a skew symmetric matrix are zero. (Delhi 2017) Q53 Use elementary column operation $C_2 \rightarrow C_2 + 2C_1$ in the following matrix equation: $(2 \ 1)$ $(3 \ 1)($ (AI 2016) 2 (2)0) 0) -11 Use elementary column operation $C_2 \rightarrow C_2 - 2C_1$ in the matrix equation Q54 4 2) 2)(2)0) 1 (*Foreign 2014*) 3 || 1 3 3 0 1 Obtain the inverse of the following matrix using elementary operations : Q55 2 1 -3^{-} -1 4 4 = -1 (2020)2 3 0 Find the inverse of the following matrix using elementary operations Q56 2 -21 3 0 4 = -1 (Delhi 2019) 0 -21 2 -3 Using elementary row transformations, find the inverse of the matrix $\begin{vmatrix} 3 \\ 2 \end{vmatrix}$ Q57 1 1 (AI 2019) Using elementary row transformations, find the inversed of the matrix Q58 1 3 2 5 7 (2018)4 = 2-2 -4-5 Using elementary operations, find the inverse of the following matrix : Q59 -1 1 2 2 3 (Dehli 2012) 1 3 1 1 Q60 Using elementary transformations, find the inverse of the matrix. 3 - 21 0 -1 -3 2 1 0 **Music** 1. परिभाषाएँ: (अलंकार, कण, मिड़, खटका, मुर्कि, गमक, ग्राम, मूर्छना, अलाय, तान) कॉपी में लिखो और याद करो । 2. रागो के समय और सिद्धांत के बारे में लिखना है और याद करना है। 3. संगीत रतनाकर, संगीत पारिजात दोनो गरंत को अपनी कॉपी में लिखो और याद करो। 4. जीवनियाँ - फयाज खान व बडे गुलाम अली खान, क्रिश्न राव शंकर पंडित = इन सभी जीवनियों को कॉपी में लिखो और याद करो । 5. झपताल, रूपकताल, दमारताल = इन सभी तालो का परिचय और बोटेसन डायग्राम बनाके अपनी कॉपी में लिखो और याद करो । 6. तालपूरा मिलाने की विधि लिखो। 7. भैरव राग, बागेश्वरी राग और मालकोश राग = याद करो और इन्हें कॉपी में लिखो ।